Article 17 web tool

Log in

Habitat assessments at EU biogeographical level

The Article 17 web tool provides an access to EU biogeographical and Member States’ assessments of conservation status of the habitat types and species of Community interest compiled as part of the Habitats Directive - Article 17 reporting process. These assessments have been carried out in EU25 for the period 2001-2006, in EU 27 for the period 2007-2012 and in EU28 for the period 2013-2018.

Choose a period, a group, then a habitat type belonging to that group.
Optionally, further refine your query by selecting one of the available biogeographical regions for that habitat type.
Once a selection has been made the conservation status can be visualised in a map view.

The ‘Data sheet info’ includes notes for each regional and overall assessment per habitat.

The ‘Audit trail’ includes the methods used for the EU biogeographical assessments and justifications for decisions made by the assessors.

Note: Rows in italic shows data not taken into account when performing the assessments (marginal presence, occasional, extinct prior HD, information, etc)

Legend
FV
Favourable
XX
Unknown
U1
Unfavourable-Inadequate
U2
Unfavourable-Bad
Current selection: 2013-2018, Grasslands, 6410 Molinia meadows on calcareous, peaty or clayey-silt-laden soils (Molinion caeruleae), All bioregions. Show all Grasslands
Member States reports
MS Region Range (km2) Area (km2) Structure and functions (km2) Future prospects Overall assessment Distribution area(km2)
Surface Status
(% MS)
Trend FRR Min Max Best value Type est. Method Status
(% MS)
Trend FRA
Area in good condition (km2)
Good
(adjusted mean value)
Not good
(adjusted mean value)
Not Known
(adjusted mean value)
1 0.20 33.80
N/A N/A 3.74
2.50 0.50 7
N/A N/A 1.64
35 35 70
15 3.50 21.25
32.82 7.93 0.03
0.19 0.56 N/A
1550 75 75
0.50 0.50 N/A
6.40 5.70 N/A
0.63 0.15 N/A
0.10 0.41 0
1.51 0.93 N/A
6.74 16.25 N/A
3.40 0.07 9.22
29.80 16.80 1.45
3.69 2.17 N/A
1.35 1.55 N/A
N/A N/A N/A
13.89 5.90 46.50
125 25 50
15 N/A N/A
0.03 N/A 0.27
3 3 N/A
N/A 13.02 19.52
100 100 N/A
3.65 1.60 N/A
N/A N/A 2.60
N/A N/A 3.60
39.79 10.87 16.61
52.22 15.84 12.07
20.66 47.34 N/A
N/A N/A 709
N/A N/A 3.25
7.90 6.66 0.04
0.04 0.06 N/A
92.50 107.50 N/A
1650 125 75
40 40 N/A
N/A N/A 8.60
6.88 1.20 10.63
N/A N/A 4
0.29 0.29 0.05
N/A N/A N/A
0.01 0.01 0.04
56.50 28.50 10
25 N/A 25
0.03 0.03 0.41
50 25 25
Good
Not good Not known Status Trend Range
prosp.
Area
prosp.
S & f
prosp.
Status Curr. CS Curr. CS
trend
Prev. CS Prev. CS
trend
Status
Nat.
of ch.
CS trend
Nat. of ch.
Distrib. Method % MS
AT ALP 16900 9.80 x > 20 50 N/A minimum b 2.10 - > 1 - 1 0.20 - 0.20 18.80 - 48.80 U1 - poor poor poor U1 U1 - U1 - noChange noChange 22000 b 25.67
BG ALP 6900 4 u 6900 N/A N/A 3.74 minimum b 0.22 = 3.74 N/A - N/A N/A - N/A 3.74 - 3.74 XX x poor poor poor U1 U1 x U1 = method method 2700 b 3.15
DE ALP 3838 2.23 = 10 10 10 estimate c 0.60 = 10 2.50 - 2.50 0.50 - 0.50 7 - 7 XX x good good unk FV FV = FV N/A noChange noChange 3900 b 4.55
ES ALP 13400 7.77 = N/A N/A 1.64 estimate a 0.10 = N/A - N/A N/A - N/A 1.64 - 1.64 XX x poor poor poor U1 U1 = FV N/A knowledge knowledge 4900 b 5.72
FR ALP 33100 19.19 = N/A N/A 70 estimate c 4.20 - > N/A - 70 N/A - 70 70 - 70 U2 x poor bad bad U2 U2 x U2 - noInfo noInfo 13400 b 15.64
HR ALP 7800 4.52 = 35.50 44 N/A estimate a 2.39 u > 14 - 16 2.50 - 4.50 19 - 23.50 U1 u good poor poor U1 U1 x N/A N/A noChange noChange 7400 a 8.63
IT ALP 44700 25.92 + > 40.89 142.53 N/A estimate b 5.50 + > 32.82 - 32.82 7.93 - 7.93 0.03 - 0.03 U1 = poor good poor U1 U1 = U2 - knowledge knowledge 18000 b 21
PL ALP 1500 0.87 = 0.50 1 0.75 estimate b 0.05 - > N/A - 0.38 0.38 - 0.75 N/A - N/A U2 - good poor poor U1 U2 - U1 - genuine noChange 400 b 0.47
RO ALP 4600 2.67 = N/A N/A 1400 interval b 84.01 = 1400 - 1700 N/A - 150 N/A - 150 FV u good good good FV FV = FV N/A knowledge knowledge 1600 a 1.87
SE ALP 32200 18.67 = N/A N/A 1 estimate b 0.06 - >> 0.50 - 0.50 0.50 - 0.50 N/A - N/A U2 - good bad bad U2 U2 - U2 - noChange noChange 6500 b 7.58
SI ALP 5422 3.14 = N/A N/A 12.10 minimum b 0.73 - >> 6.40 - 6.40 5.70 - 5.70 N/A - N/A U2 - good bad poor U2 U2 - U2 - noChange noChange 2800 b 3.27
SK ALP 2112.15 1.22 + N/A N/A 0.78 estimate b 0.05 = > 0.63 - 0.63 0.15 - 0.15 N/A - N/A U1 u good poor poor U1 U1 = U1 = N/A N/A 2100 b 2.45
BE ATL 10900 2.80 = > 0.49 0.63 0.50 estimate a 0.05 u >> 0.04 - 0.15 0.35 - 0.46 0 - 0 U2 x poor poor bad U2 U2 x U2 = noChange method 6300 b 3.21
DE ATL 16267 4.19 = > 2.37 2.50 2.43 estimate b 0.26 - 3.11 1.24 - 1.79 0.65 - 1.20 N/A - N/A U1 - poor bad poor U2 U2 - U2 - noChange noChange 11100 b 5.65
DK ATL 13470 3.47 = N/A N/A 23 estimate b 2.44 = 3.66 - 9.83 13.17 - 19.34 N/A - N/A U2 = good good bad U2 U2 = U1 = N/A N/A 7700 b 3.92
ES ATL 47100 12.12 = N/A N/A 12.69 estimate b 1.34 = 3.40 - 3.40 0.07 - 0.07 9.22 - 9.22 U1 x good poor unk U1 U1 = U1 x noChange knowledge 24800 b 12.62
FR ATL 184300 47.42 = 830 830 830 estimate c 87.95 - > 29.80 - 29.80 16.80 - 16.80 1.45 - 1.45 U2 - unk poor poor U2 U2 - U2 - noChange noChange 83900 b 42.70
IE ATL 20700 5.33 - 21600 N/A N/A 5.86 minimum a 0.62 - >> 3.69 - 3.69 2.17 - 2.17 N/A - N/A U2 = poor bad bad U2 U2 - U2 - noChange noChange 11200 a 5.70
NL ATL 11900 3.06 = N/A N/A 2.90 estimate a 0.31 = >> 0.50 - 2.20 0.70 - 2.40 N/A - N/A U1 = good poor poor U1 U2 = U2 = noChange noChange 9600 a 4.89
PT ATL 6500 1.67 = x N/A N/A N/A d 0 + < N/A - N/A N/A - N/A N/A - N/A U1 = good good poor U1 U1 - U1 = noChange knowledge 5000 c 2.54
UK ATL 77527.90 19.95 = 77527.90 N/A N/A 66.29 estimate a 7.02 - >> 13.89 - 13.89 5.90 - 5.90 46.50 - 46.50 U2 + good bad bad U2 U2 = U2 - noChange genuine 36900 a 18.78
RO BLS 500 100 + N/A N/A 300 interval b 100 + 100 - 150 N/A - 50 N/A - 100 FV = good good good FV FV = U1 - knowledge knowledge 300 a 100
EE BOR 22200 4.91 = 10 20 N/A estimate a 5.79 = 10 - 20 N/A - N/A N/A - N/A FV = good good good FV FV = FV N/A noChange noChange 13700 a 7.09
FI BOR 800 0.18 = > N/A N/A 0.30 estimate c 0.12 = > 0.03 - 0.03 N/A - N/A 0.27 - 0.27 U2 = poor bad bad U2 U2 = U2 = noChange noChange 600 a 0.31
LT BOR 64787 14.34 = 64787 N/A N/A 6.17 estimate a 2.38 - > 3 - 3 3 - 3 N/A - N/A U2 u good bad bad U2 U2 x U2 - knowledge knowledge 20700 a 10.71
LV BOR 62071 13.74 = x 32.53 42.30 N/A estimate b 14.45 u x N/A - N/A 9.76 - 16.27 16.27 - 22.77 U2 - good poor bad U2 U2 x U2 - knowledge knowledge N/A a 0
SE BOR 301900 66.83 = N/A N/A 200 estimate b 77.25 - >> 100 - 100 100 - 100 N/A - N/A U2 - good bad bad U2 U2 - U2 - noChange noChange 158300 b 81.89
AT CON 12400 2.28 - >> 4.70 5.80 5.20 estimate a 0.16 - >> 3.30 - 4 1.40 - 1.80 N/A - N/A U2 - bad bad bad U2 U2 - U2 - noChange noChange 9400 b 2.47
BE CON 7000 1.29 = N/A N/A 2.60 estimate b 0.08 = >> N/A - N/A N/A - N/A 2.60 - 2.60 U2 - good bad bad U2 U2 - U2 = noChange genuine 3800 b 1
BG CON 3400 0.62 u 3400 N/A N/A 3.60 minimum b 0.11 - 3.60 N/A - N/A N/A - N/A 3.60 - 3.60 XX x poor poor poor U1 U1 x FV N/A method method 1500 b 0.39
CZ CON 71200 13.07 = N/A N/A 67.27 estimate a 2.05 = 39.79 - 39.79 10.87 - 10.87 16.61 - 16.61 U2 = good good poor U1 U2 = U2 - genuine genuine 47300 a 12.44
DE CON 156712 28.77 - > 76.09 83.92 80.22 estimate b 2.45 - >> 50.70 - 53.73 15.17 - 16.51 7.25 - 16.90 U1 - poor bad poor U2 U2 - U2 - noChange noChange 105700 b 27.80
DK CON 29540 5.42 = N/A N/A 68 estimate b 2.08 = >> 11.70 - 29.61 38.39 - 56.30 N/A - N/A U2 = good bad bad U2 U2 = U2 x N/A N/A 15000 b 3.95
FR CON 709 0.13 - > N/A N/A 709 estimate b 21.64 - > N/A - N/A N/A - N/A 709 - 709 XX x poor bad unk U2 U2 - U2 - method noChange 66400 b 17.46
HR CON 6800 1.25 = 3 3.50 N/A estimate a 0.10 u >> N/A - N/A N/A - N/A 3 - 3.50 U2 u good bad bad U2 U2 x N/A N/A noChange noChange 5600 a 1.47
IT CON 35000 6.43 + x 28.69 69.17 N/A estimate b 1.49 + > 7.90 - 7.90 6.66 - 6.66 0.04 - 0.04 U2 - good good bad U2 U2 = U1 = knowledge noChange 13600 b 3.58
LU CON 2200 0.40 = > 0.10 0.12 N/A estimate b 0 - 0.54 0.04 - 0.05 0.05 - 0.06 N/A - N/A U2 - poor bad bad U2 U2 - U2 = noChange genuine 1300 a 0.34
PL CON 182200 33.45 = N/A N/A 200 estimate b 6.10 = 40 - 145 55 - 160 N/A - N/A U1 = good good good FV U1 = U1 - noChange knowledge 85700 b 22.54
RO CON 4000 0.73 = N/A N/A 2000 interval b 61.04 = 1600 - 1700 50 - 200 50 - 100 FV = good good good FV FV = FV N/A knowledge knowledge 1300 a 0.34
SE CON 23900 4.39 = N/A N/A 80 estimate b 2.44 - >> 40 - 40 40 - 40 N/A - N/A U2 - good bad bad U2 U2 - U2 - noChange noChange 18600 b 4.89
SI CON 9614 1.77 = N/A N/A 8.60 minimum b 0.26 - >> N/A - N/A N/A - N/A 8.60 - 8.60 XX x good bad unk U2 U2 x U2 - noChange noInfo 5000 b 1.32
ES MED 88200 47.96 - x N/A N/A 18.70 estimate b 60.27 - > 6.88 - 6.88 1.20 - 1.20 10.63 - 10.63 U1 - unk unk unk XX U1 - U1 x noChange knowledge 39100 b 40.64
FR MED 37500 20.39 = x 3 5 N/A estimate c 12.89 - x N/A - N/A N/A - N/A 3 - 5 U1 u good poor poor U2 U2 - U2 - noChange noChange 14100 b 14.66
IT MED 6600 3.59 + 3 13.66 N/A estimate b 26.84 + 0.29 - 0.29 0.29 - 0.29 0.05 - 0.05 U1 - good good bad U2 U2 = U2 - noChange knowledge 2500 b 2.60
PT MED 51600 28.06 = x N/A N/A N/A d 0 + < N/A - N/A N/A - N/A N/A - N/A U1 - good good poor U1 U1 - U1 = noChange knowledge 40500 c 42.10
CZ PAN 2500 5.99 = N/A N/A 0.06 estimate a 0.03 = 0.01 - 0.01 0.01 - 0.01 0.04 - 0.04 U2 - good poor poor U2 U2 - U1 - noChange noChange 400 a 0.97
HU PAN 38418 92.06 = 85 105 N/A estimate b 48.59 - > 50 - 63 26 - 31 9 - 11 U2 - poor poor bad U2 U2 - U2 - noChange noChange 40000 b 97.09
RO PAN 100 0.24 = N/A N/A 100 interval a 51.14 = N/A - 50 N/A - N/A N/A - 50 FV = good good good FV FV = U1 N/A knowledge knowledge N/A a 0
SK PAN 714.85 1.71 + N/A N/A 0.47 estimate b 0.24 = > 0.03 - 0.03 0.03 - 0.03 0.41 - 0.41 U1 u good poor poor U1 U1 = U1 = N/A N/A 800 b 1.94
RO STE 400 100 = N/A N/A 200 interval b 100 = N/A - 100 N/A - 50 N/A - 50 FV = good good good FV FV = FV N/A knowledge knowledge 200 a 100
Automatic Assessments Show,Hide
EU biogeographical assessments
MS/EU28 Region Surface Status
Range
Trend FRR Min Max Best value Status
Area
Trend FRA Good Not good Not known Status Str.
& funct.
Trend Range
prosp.
Area
prosp.
S & f
prosp.
Status
Future
prosp.
Curr. CS Curr. CS
trend
2012 CS 2012 CS
trend
Status
Nat.
of ch.
CS trend
Nat. of ch.
2001-06 status
with
backcasting
Target 1
EU28 CON 2XA 1251.65 1301.58 2XA 193 | 320 | - 168 | 292 | - 751 | 761 | - 2XA - 2XA MTX - U2 - nc nc U2 C

03/20

EEA-ETC/BD

Institution: -

Member State: Slovakia

EEA-ETC/BD
EU28 MED 183900 2GD - 2GD - | - | - - | - | - - | - | - 0EQ - 2GD MTX - U1 x nc nong U1 C

01/20

EEA-ETC/BD

Institution: -

Member State: Slovakia

EEA-ETC/BD
EU28 PAN 41732.85 1 = ≈ 41732.85 86 106 96 1 - < 105 - | - | 57 - | - | 29 - | - | 10 1 - 2XA MTX - U2 - nc nc U2 C

01/20

EEA-ETC/BD

Institution: -

Member State: Slovakia

EEA-ETC/BD
EU28 ALP 172472.15 1 + < 178632.15 196.15 336.79 2XA 58 | 130 | - 18 | 90 | - 120 | 155 | - 2XA x 2XA MTX - U2 - nc nc U2 C

01/20

EEA-ETC/BD

Institution: -

Member State: Slovakia

EEA-ETC/BD
EU28 STE 400 0MS = ≈ 400 0MS = - | - | - - | - | - - | - | - 0MS = 0MS MTX = FV = nc nc FV A=

01/20

EEA-ETC/BD

Institution: -

Member State: Slovakia

EEA-ETC/BD
EU28 ATL 388664.9 1 = < 392281.6 943.67 2XA - | - | - - | - | - - | - | - 2XA 2XA MTX - U2 - nc nc U2 C

01/20

EEA-ETC/BD

Institution: -

Member State: Slovakia

EEA-ETC/BD
EU28 BLS 500 0MS + ≈ 500 0MS + - | - | - - | - | - - | - | - 0MS = 0MS MTX = U1 - nong nong U1 A=

01/20

EEA-ETC/BD

Institution: -

Member State: Slovakia

EEA-ETC/BD
EU28 BOR 451758 0EQ = < 451838 249 268.77 258.89 2XA - | - | - - | - | 116 - | - | 19.79 2XA 2XA MTX - U2 - nc nc U2 C

01/20

EEA-ETC/BD

Institution: -

Member State: Slovakia

EEA-ETC/BD
The current dataset is readonly, so you cannot add a conclusion.

Legal notice: A minimum amount of personal data (including cases of submitted comments during the public consultation) is stored in the web tool. These data are necessary for the functioning of the tool and are only accessible to tool administrators.

The distribution data for France (2013 – 2018 reporting) were corrected after the official submission of the Article 17 reports by France. The maps displayed via this web tool take into account these corrections, while the values under Distribution area (km2) used for the EU biogeographical assessment are based on the original Article 17 report submitted by France. More details are provided in the feedback part of the reporting envelope on CDR.